Cutset Sampling with Likelihood Weighting

نویسندگان

  • Bozhena Bidyuk
  • Rina Dechter
چکیده

The paper extends the principle of cutset sampling over Bayesian networks, presented previously for Gibbs sampling, to likelihood weighting (LW). Cutset sampling is motivated by the Rao-Blackwell theorem which implies that sampling over a subset of variables requires fewer samples for convergence due to the reduction in sampling variance. The scheme exploits the network structure in selecting cutsets that allow efficient computation of the sampling distributions. In particular, as we show empirically, likelihood weighting over a loop-cutset (abbreviated LWLC), is time-wise cost-effective. We also provide an effective way for caching the probabilities of the generated samples which improves the performance of the overall scheme. We compare LWLC against regular liklihood-weighting and against Gibbsbased cutset sampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutset sampling for Bayesian networks Cutset sampling for Bayesian networks

The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...

متن کامل

Cutset Sampling for Bayesian Networks

The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...

متن کامل

An Empirical Study of w-Cutset Sampling for Bayesian Networks

The paper studies empirically the time-space trade-off between sampling and inference in the cutset sampling algorithm. The algorithm samples over a subset of nodes in a Bayesian network and applies exact inference over the rest. As the size of the sampling space decreases, requiring less samples for convergence, the time for generating each single sample increases. Algorithm wcutset sampling s...

متن کامل

Accelerated Bayesian MR Image Reconstruction

This paper concerns reconstruction of 2D and 3D MR images from raw, sparsely and nonuniformly sampled k-space signals. In particular, it pertains to iterative Bayesian image reconstruction and acceleration of the attendant convergence to the ‘Maximum A Posteriori’ (MAP) image. Significant acceleration is achieved by weighting of the Likelihood term with the inverse of the sampling density. In a...

متن کامل

Generalized pseudo empirical likelihood inferences for complex surveys

We consider generalized pseudo empirical likelihood inferences for complex surveys. The method is based on a weighted version of the Kullback-Leibler (KL) distance for calibration estimation (Deville and Särndal, 1992) and includes the pseudo empirical likelihood estimator (Chen and Sitter, 1999; Wu and Rao, 2006) and the calibrated likelihood estimator (Tan, 2013) as special cases. We show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.6822  شماره 

صفحات  -

تاریخ انتشار 2006